Polar Fuel Cell Cartridge Kyocera Senco Chemwatch: 5435-19 Version No: 5.1 Safety Data Sheet (Conforms to Annex II of REACH (1907/2006) - Regulation 2020/878) Chemwatch Hazard Alert Code: 4 Issue Date: **24/02/2023**Print Date: **24/02/2023**L.REACH.SWE.EN.E # SECTION 1 Identification of the substance / mixture and of the company / undertaking | 1.1. Product Identifier | | |-------------------------------|---| | Product name | Polar Fuel Cell Cartridge | | Chemical Name | Not Applicable | | Synonyms | PC1307P, PC1308P PC1309P, PC1310P | | Proper shipping name | AEROSOLS (contains LPG (liquefied petroleum gas)) | | Chemical formula | Not Applicable | | Other means of identification | UFI:7KJM-UAPS-EC60-J4HN | # 1.2. Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Fuel for 1st Fix (40g) and 2nd Fix (18g) Cordless nail guns. Use according to manufacturer's directions. | |--------------------------|--| | Uses advised against | No specific uses advised against are identified. | # 1.3. Details of the manufacturer or supplier of the safety data sheet | Registered company name | Kyocera Senco | |-------------------------|--| | Address | Pascallaan 88 Lelystad 8218 NJ Netherlands | | Telephone | +31 320 295 575 | | Fax | +31 320 295 569 | | Website | http://www.kyocera-senco.eu/ | | Email | info@kyocera-senco.eu | # 1.4. Emergency telephone number | Association / Organisation | Kyocera Senco | |-----------------------------------|------------------| | Emergency telephone numbers | +31 320 29 55 75 | | Other emergency telephone numbers | Not Available | # **SECTION 2 Hazards identification** # 2.1. Classification of the substance or mixture | Classification according to regulation (EC) No 1272/2008 [CLP] and amendments [1] | H222+H229 - Aerosols Category 1 | |---|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | # 2.2. Label elements Hazard pictogram(s) Signal word Dange Hazard statement(s) **H222+H229** Extremely flammable aerosol. Pressurized container: may burst if heated. Supplementary statement(s) EUH044 Risk of explosion if heated under confinement. # Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | |------|--| | P211 | Do not spray on an open flame or other ignition source. | Chemwatch: 5435-19 Version No: 5.1 # Page 2 of 12 # Polar Fuel Cell Cartridge Issue Date: 24/02/2023 Print Date: 24/02/2023 P251 Do not pierce or burn, even after use. #### Precautionary statement(s) Response Not Applicable # Precautionary statement(s) Storage P410+P412 Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. # Precautionary statement(s) Disposal Not Applicable #### 2.3. Other hazards Inhalation and/or ingestion may produce health damage*. Cumulative effects may result following exposure*. May produce discomfort of the eyes and respiratory tract*. Repeated exposure potentially causes skin dryness and cracking*. Vapours potentially cause drowsiness and dizziness*. REACH - Art.57-59: The mixture does not contain Substances of Very High Concern (SVHC) at the SDS print date. # **SECTION 3 Composition / information on ingredients** #### 3.1.Substances See 'Composition on ingredients' in Section 3.2 #### 3.2.Mixtures | 1.CAS No
2.EC No
3.Index No
4.REACH No | %[weight] | Name | Classification according to regulation (EC) No 1272/2008 [CLP] and amendments | SCL /
M-Factor | Nanoform Particle
Characteristics | |---|-----------|-------------------------------|---|-----------------------|--------------------------------------| | 1.68476-85-7.
2.270-704-2
3.649-202-00-6
4.Not Available | >60 | LPG (liquefied petroleum gas) | Flammable Gases Category 1A, Gases Under Pressure (Liquefied Gas); H220, H280, EUH044 [1] | Not
Available | Not Available | | Le | • | • | sification drawn from Regulation (EU) No 1272/2008 - Annex V
ntified as having endocrine disrupting properties | /I; 3. Classification | n drawn from C&L * EU | # **SECTION 4 First aid measures** # 4.1. Description of first aid measures | Eye Contact | If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. | | Inhalation | If aerosols, fumes or combustion products are inhaled: | | Ingestion | ► Not considered a normal route of entry. | # 4.2 Most important symptoms and effects, both acute and delayed See Section 11 # 4.3. Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 Firefighting measures** # 5.1. Extinguishing media # SMALL FIRE: ▶ Water spray, dry chemical or CO2 # LARGE FIRE: ► Water spray or fog. Chemwatch: 5435-19 Page 3 of 12 Version No: 5.1 # Polar Fuel Cell Cartridge Issue Date: 24/02/2023 Print Date: 24/02/2023 #### 5.2. Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### 5.3. Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - If safe, switch off electrical equipment until vapour fire hazard removed. - Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire - Equipment should be thoroughly decontaminated after use. - Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Severe explosion hazard, in the form of vapour, when exposed to flame or spark. - Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition with violent container rupture. - Fire/Explosion Hazard Fire Fighting - Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. - Hazards may not be restricted to pressure effects. - May emit acrid, poisonous or corrosive fumes. - ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. # **SECTION 6 Accidental release measures** #### 6.1. Personal precautions, protective equipment and emergency procedures See section 8 #### 6.2. Environmental precautions See section 12 #### 6.3. Methods and material for containment and cleaning up - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes - Wear protective clothing, impervious gloves and safety glasses Shut off all possible sources of ignition and increase ventilation. - **Minor Spills** Wipe up. - If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. - Undamaged cans should be gathered and stowed safely. - Remove leaking cylinders to a safe place. - Fit vent pipes. Release pressure under safe, controlled conditions - Burn issuing gas at vent pipes. - DO NOT exert excessive pressure on valve: DO NOT attempt to operate damaged valve. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. **Major Spills** - Prevent, by any means available, spillage from entering drains or water courses - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse / absorb vapour. - Absorb or cover spill with sand, earth, inert materials or vermiculite. - If safe, damaged cans should be placed in a container
outdoors, away from ignition sources, until pressure has dissipated. - Undamaged cans should be gathered and stowed safely. - Collect residues and seal in labelled drums for disposal # 6.4. Reference to other sections Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** Safe handling #### 7.1. Precautions for safe handling # Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - ► DO NOT incinerate or puncture aerosol cans. Polar Fuel Cell Cartridge Page 4 of 12 Issue Date: 24/02/2023 Print Date: 24/02/2023 ▶ DO NOT spray directly on humans, exposed food or food utensils. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. ▶ Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Fire and explosion protection Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Other information Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. ► Check regularly for spills and leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### 7.2. Conditions for safe storage, including any incompatibilities | Suitable container | Aerosol dispenser. Check that containers are clearly labelled. | |--|--| | Storage incompatibility | Avoid reaction with oxidising agents, bases and strong reducing agents. Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. | | Hazard categories in accordance with Regulation (EC) No 1272/2008 | P3b: Flammable Aerosols | | Qualifying quantity (tonnes) of
dangerous substances as
referred to in Article 3(10) for
the application of | P3b Lower- / Upper-tier requirements: 5 000 (net) / 50 000 (net) | #### 7.3. Specific end use(s) See section 1.2 # **SECTION 8 Exposure controls / personal protection** # 8.1. Control parameters | Ingredient | DNELs Exposure Pattern Worker | PNECs
Compartment | |-------------------------------|--|----------------------| | LPG (liquefied petroleum gas) | Dermal 23.4 mg/kg bw/day (Systemic, Chronic) | Not Available | ^{*} Values for General Population # Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------|---------------|---------------|---------------|---------------|---------------|---------------| | Not Available #### Not Applicable ### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | | TEEL-3 | |-------------------------------|---------------|--------------|---------------|--------------| | LPG (liquefied petroleum gas) | 65,000 ppm | 2.30E+05 ppm | | 4.00E+05 ppm | | Ingredient | Original IDLH | | Revised IDLH | | | LPG (liquefied petroleum gas) | 2.000 ppm | | Not Available | | NOTE K: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.1%w/w 1,3-butadiene (EINECS No 203-450-8). - European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP #### 8.2. Exposure controls | 8.2.1. Appropriate engineering controls | Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. | |---|--| | | General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. | Provide adequate ventilation in warehouse or closed storage areas Chemwatch: **5435-19** Page **5** of **12**Version No: **5.1** #### Polar Fuel Cell Cartridge Issue Date: **24/02/2023**Print Date: **24/02/2023** Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Speed: | |--|----------------------------| | aerosols, (released at low velocity into zone of active generation) | 0.5-1 m/s | | direct spray spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) | 1-2 5 m/s (200-500 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # 8.2.2. Individual protection measures, such as personal protective equipment # Eye and face protection Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trianed in the interest of the class of the class of the contact the contact of the class of the contact their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection See Hand protection below # Hands/feet protection Body protection Wear general protective gloves, eg. light weight rubber gloves. #### Body
protection See Other protection below - The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. - Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. No special equipment needed when handling small quantities. #### Other protection # OTHERWISE: Overalls. - Skin cleansing cream. - Skin cleansing cEvewash unit. - Do not spray on hot surfaces. # Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face Respirator | Full-Face Respirator | |------------------------------------|--|----------------------|----------------------| | up to 10 | 1000 | AX-AUS / Class1 | - | | up to 50 | 1000 | - | AX-AUS / Class 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | AX-2 | | up to 100 | 10000 | - | AX-3 | | 100+ | | | Airline** | * - Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used - Positive pressure, full face, air-supplied breathing apparatus should be used for work in enclosed spaces if a leak is suspected or the primary containment is to be opened (e.g. for a cylinder change) - Air-supplied breathing apparatus is required where release of gas from primary containment is either suspected or demonstrated. Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals. Issue Date: **24/02/2023**Print Date: **24/02/2023** See section 12 # **SECTION 9 Physical and chemical properties** #### 9.1. Information on basic physical and chemical properties | Appearance | Colourless liquid. Colourless | | | |--|-------------------------------|---|----------------| | | | | | | Physical state | Liquid | Relative density (Water = 1) | 0.54 | | Odour | Characteristic | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 494 | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | -187 | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | -164 to -42 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | -104 to -60 | Taste | Not Available | | Evaporation rate | Fast | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 8.5 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 2.15 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Not Available | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Nanoform Solubility | Not Available | Nanoform Particle
Characteristics | Not Available | | Particle Size | Not Available | | | #### 9.2. Other information Not Available # **SECTION 10 Stability and reactivity** | 10.1.Reactivity | See section 7.2 | |--|---| | 10.2. Chemical stability | Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. | | 10.3. Possibility of hazardous reactions | See section 7.2 | | 10.4. Conditions to avoid | See section 7.2 | | 10.5. Incompatible materials | See section 7.2 | | 10.6. Hazardous decomposition products | See section 5.3 | # **SECTION 11 Toxicological information** # 11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008 Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system #### Inhaled Common, generalised symptoms associated with toxic gas inhalation include: - central nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures; - respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest; - cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest; - gastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Version No: **5.1** #### **Polar Fuel Cell Cartridge** Issue Date: **24/02/2023**Print Date: **24/02/2023** Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination WARNING: Intentional misuse by concentrating/inhaling contents may be lethal. Accidental ingestion of the material may be damaging to the health of the individual. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Ingestion Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin Contact Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva Eve (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Direct contact with the eye may not
cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures... Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or Chronic biochemical systems. Principal route of occupational exposure to the gas is by inhalation. TOXICITY IRRITATION Polar Fuel Cell Cartridge Not Available Not Available TOXICITY IRRITATION LPG (liquefied petroleum gas) Inhalation(Rat) LC50: 658 mg/l4h^[2] Not Available No significant acute toxicological data identified in literature search. specified data extracted from RTECS - Register of Toxic Effect of chemical Substances for Petroleum Hydrocarbon Gases: Legend: LPG (LIQUEFIED PETROLEUM GAS) In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mammalian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas constituent endpoint toxicity values (LC50, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different for different mammalian endpoints, again, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas. 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise All Hydrocarbon Gases Category members contain primarily hydrocarbons (i.e., alkanes and alkenes) and occasionally asphyxiant gases like hydrogen. The inorganic components of the petroleum hydrocarbon gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diesel fuel, lubricating oils, etc.), the inorganic and hydrocarbon constituents of hydrocarbon gases can be evaluated for hazard individually to then predict the screening level hazard of the Category members Acute toxicity: No acute toxicity LC50 values have been derived for the C1 -C4 and C5- C6 hydrocarbon (HC) fractions because no mortality was observed at the highest exposure levels tested (~ 5 mg/l) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum hydrocarbon gas constituents from most to least toxic is: C5-C6 HCs (LC50 > 1063 ppm) > C1-C4 HCs (LC50 > 10,000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 129,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). Repeat dose toxicity: With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected petroleum hydrocarbon gas constituents. Based upon LOAEL values, the order of order of repeated-dose toxicity of these constituents from most toxic to the least toxic is: Benzene (LOAEL .>=10 ppm) > C1-C4 HCs (LOAEL = 5,000 ppm; assumed to be 100% 2-butene) > C5-C6 HCs (LOAEL = 6,625 ppm) > butadiene (LOAEL = 8,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). #### Genotoxicity: *In vitro*: The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vitro* genotoxicity. The exceptions are: benzene and 1,3-butadiene, which are genotoxic in bacterial and mammalian *in vitro* test systems. *In vivo*: The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vivo* genotoxicity. The exceptions are benzene and 1,3-butadiene, which are genotoxic in *in vivo* test systems **Developmental toxicity:** Developmental effects were induced by two of the petroleum hydrocarbon gas constituents, benzene and the C5 -C6 hydrocarbon fraction. No developmental toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for developmental toxicity. Based on LOAEL and NOAEL values, the order of acute toxicity of these constituents from most to least toxic is: Benzene (LOAEL = 20 ppm) > butadiene (NOAEL .>=1,000 ppm) > C5-C6 HCs (LOAEL = 3,463 ppm) > C1-C4 HCs (NOAEL >=5,000 ppm; assumed to be 100% 2-butene) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). Reproductive toxicity: Reproductive effects were induced by only two petroleum hydrocarbon gas constituents, benzene and isobutane (a constituent of the the C1-C4 hydrocarbon fraction). No reproductive toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for reproductive toxicity. Based on LOAEL and NOAEL values, the order of reproductive toxicity of these constituents from most to least toxic is: Benzene (LOAEL = 300 ppm) > butadiene (NOAEL .>=6,000 ppm) > C5-C6 HCs (NOAEL .>=6,521 ppm) > C1-C4 HCs (LOAEL = 9,000 ppm; assumed to be 100% isobutane) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen) | Acute Toxicity | × | Carcinogenicity | × | |-------------------------------|---|------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | × | # Polar Fuel Cell Cartridge Issue Date: **24/02/2023**Print Date: **24/02/2023** | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | |-----------------------------------|---|--------------------------|---| | Mutagenicity | × | Aspiration Hazard | × | | | | | | Legend: X – Data either not available or does not fill the criteria for classification Data available to make classification #### 11.2 Information on other hazards #### 11.2.1. Endocrine disrupting properties No evidence of endocrine disrupting properties were found in the current literature. #### 11.2.2. Other information See Section 11.1 # **SECTION 12 Ecological information** #### 12.1. Toxicity | | Endpoint | Test Duration (hr) | Species | Value | Source | |-------------------------------|------------------|---|---------------|------------------|------------------| | Polar Fuel Cell Cartridge | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | LPG (liquefied petroleum gas) | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | Ecotox databa | n 1. IUCLID Toxicity Data 2. Europe ECHA Register
ase - Aquatic Toxicity Data 5. ECETOC Aquatic Haz
ation Data 8. Vendor Data | | | | for Petroleum Hydrocarbon Gases: #### **Environmental fate:** The environmental fate characteristics of petroleum hydrocarbon gases are governed by these physical-chemical attributes. All components of these gases will partition to the air where interaction with hydroxyl radicals is an important fate process. Hydrocarbons having molecular weights represented in these streams are inherently biodegradable, but their tendency to partition to the atmosphere would prevent their biotic degradation in water and soils. However, if higher molecular weight fractions of these streams enter the aquatic or terrestrial environment, biodegradation may be an important fate mechanism. The majority of components making up hydrocarbon gases typically have low melting and boiling points. They also have high vapor pressures and low octanol/water partition coefficients. The aqueous solubilities of these substances vary, and range from approximately 22 parts per million to several hundred parts per million. The environmental fate characteristics of refinery gases are governed by these physical-chemical attributes. Components of the hydrocarbon gas streams will partition to the air, and photodegradation reactions will be an important fate process for many of the hydrocarbon components. The hydrocarbons in these mixtures are inherently biodegradable, but due to their tendency to partition to the atmosphere, biodegradation is not anticipated to be an important fate mechanisms. However, if released to water or soil, some of the higher molecular weight fractions may become available for microbial attack. The inorganic gases are chemically stable and may be lost to the atmosphere or simply become involved in the environmental recycling of their atoms. Some show substantial water solubility, but their volatility eventually causes these gases to enter the atmosphere. Substances in Refinery Gases that volatilise to air may undergo a gas-phase oxidation reaction with photochemically produced hydroxyl radicals (OH-). Atmospheric oxidation as a result of hydroxyl radical attack is not direct photochemical degradation, but rather indirect degradation Indirect photodegradation of the hydrocarbon components in Refinery Gases can be an important fate process for these constituents. In general, half lives decrease with increasing carbon chain length. Half lives for this fraction of Refinery Gases ranged from 960 days (methane) to 0.16 days (butadiene). The constituents of the C5- C6 hydrocarbon fraction have photodegradation half-lives of approximately two days. The hydrocarbon and non-hydrocarbon constituents in Refinery Gases do not contain the functional groups or chemical linkages known to undergo hydrolysis reactions. Therefore hydrolysis will not play an important role in the environmental fate for the components in Refinery Gas streams. Biodegradation of the hydrocarbon components in refinery gases may occur in soil and water. Gaseous hydrocarbons are widespread in nature and numerous types of microbes have evolved
which are capable of oxidizing these substances as their sole energy source. Although volatilization is the predominant behavior for these gases, sufficient aqueous solubility and bioavailability is exhibited by these compounds. The use of gaseous carbon sources for cell growth is common among autotrophic organisms. Higher chain length hydrocarbons typical of naphtha streams also are known to inherently biodegrade in the environment # Ecotoxicity: Acute LC/EC50 values for the hydrocarbon components of these gas streams ranged roughly from 1 to 100 mg/L. Although the LC/EC50 data for the individual gases illustrate the potential toxicity to aquatic organisms, aqueous concentrations from releases of these gases would likely not persist in the aquatic environment for a sufficient duration to elicit toxicity. Based on a simple conceptual exposure model analysis, emissions of petroleum hydrocarbon gases to the atmosphere would not likely result in acutely toxic concentrations in adjacent water bodies because such emissions will tend to remain in the atmosphere. Several of the constituents in refinery gases were shown to be highly hazardous to aquatic organisms in laboratory toxicity tests where exposure concentrations can be maintained over time. Hydrogen sulfide was shown to be the most toxic constituent to fish (LC50 ranged 0.007 to 0.2 mg/L) and invertebrates (EC50 ranged 0.022 to 1.07 mg/L), although several LC/EC50 values for ammonia also were below 1 mg/l for these organisms (0.083 to 4.6 mg/L and 0.53 to 22.8 mg/L, respectively). DO NOT discharge into sewer or waterways. # 12.2. Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | # 12.3. Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | # 12.4. Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | # 12.5. Results of PBT and vPvB assessment P B T # Polar Fuel Cell Cartridge Issue Date: **24/02/2023**Print Date: **24/02/2023** | | Р | В | Т | |-------------------------|---------------|---------------|---------------| | Relevant available data | Not Available | Not Available | Not Available | | PBT | X | × | × | | vPvB | X | × | × | | PBT Criteria fulfilled? | | | No | | vPvB | | | No | #### 12.6. Endocrine disrupting properties No evidence of endocrine disrupting properties were found in the current literature. #### 12.7. Other adverse effects No evidence of ozone depleting properties were found in the current literature. ### **SECTION 13 Disposal considerations** #### 13.1. Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - ► Recycling - Disposal (if all else fails) # Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ▶ Consult State Land Waste Management Authority for disposal. - ▶ Discharge contents of damaged aerosol cans at an approved site. - Allow small quantities to evaporate. - DO NOT incinerate or puncture aerosol cans. Bury residues and emptied aerosol cans at an approved site. - Waste treatment options Not Available Sewage disposal options Not Available # **SECTION 14 Transport information** # Labels Required Marine Pollutant NO #### Land transport (ADR-RID) | Zana danoport (vier rite) | | | | |----------------------------------|---|--------------------|--| | 14.1. UN number or ID number | 1950 | | | | 14.2. UN proper shipping name | AEROSOLS (contains LPG (liquefied petroleum gas)) | | | | 14.3. Transport hazard class(es) | Class 2.1 Subrisk Not Applicable | | | | 14.4. Packing group | Not Applicable | | | | 14.5. Environmental hazard | Not Applicable | | | | | Hazard identification (Kemler) Classification code | Not Applicable 5F | | | 14.6. Special precautions for | Hazard Label | 2.1 | | | user | Special provisions | 190 327 344 625 | | | | Limited quantity | 1L | | | | Tunnel Restriction Code | 2 (D) | | # Air transport (ICAO-IATA / DGR) | 14.1. | UN number | 1950 | |-------|-----------|------| | 14.1. | UN number | 1950 | Chemwatch: **5435-19**Version No: **5.1** Page 10 of 12 # **Polar Fuel Cell Cartridge** Issue Date: **24/02/2023**Print Date: **24/02/2023** | 14.2. UN proper shipping name | Aerosols, flammable (contains LPG (liquefied petroleum gas)) | | | | |------------------------------------|--|---------------------------------------|----------------|--| | | ICAO/IATA Class | 2.1 | | | | 14.3. Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | 01400(00) | ERG Code | ERG Code 10L | | | | 14.4. Packing group | Not Applicable | | | | | 14.5. Environmental hazard | Not Applicable | | | | | | Special provisions | | A145 A167 A802 | | | | Cargo Only Packing Instructions | | 203 | | | | Cargo Only Maximum Qty / Pack | | 150 kg | | | 14.6. Special precautions for user | Passenger and Cargo Packing Instructions | | 203 | | | usui | Passenger and Cargo Maximum Qty / Pack | | 75 kg | | | | Passenger and Cargo | Limited Quantity Packing Instructions | Y203 | | | | Passenger and Cargo | Limited Maximum Qty / Pack | 30 kg G | | #### Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 1950 | | |------------------------------------|--|--| | 14.2. UN proper shipping name | AEROSOLS (contains LPG (liquefied petroleum gas)) | | | 14.3. Transport hazard class(es) | IMDG Class 2.1 IMDG Subrisk Not Applicable | | | 14.4. Packing group | Not Applicable | | | 14.5. Environmental hazard | Not Applicable | | | 14.6. Special precautions for user | EMS Number F-D, S-U Special provisions 63 190 277 327 344 381 959 Limited Quantities 1000 ml | | # Inland waterways transport (ADN) | 1950 | | |---|---| | AEROSOLS (contains LPG (liquefied petroleum gas)) | | | 2.1 Not Applicable | | | Not Applicable | | | Not Applicable | | | Classification code | 5F | | Special provisions | 190; 327; 344; 625 | | Limited quantity | 1L | | Equipment required | PP, EX, A | | Fire cones number | 1 | | | AEROSOLS (contains L 2.1 Not Applicable Not Applicable Classification code Special provisions Limited quantity Equipment required | # 14.7. Maritime transport in bulk according to IMO instruments # 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-------------------------------|---------------| | LPG (liquefied petroleum gas) | Not Available | # 14.7.3. Transport in bulk in accordance with the IGC Code | duct name | Ship Type | |-------------------------------|---------------| | LPG (liquefied petroleum gas) | Not Available | # **SECTION 15 Regulatory information** # 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture LPG (liquefied petroleum gas) is found on the following regulatory lists Version No: 5.1 Polar Fuel Cell Cartridge Issue Date: 24/02/2023 Print Date: 24/02/2023 Chemical Footprint Project - Chemicals of High Concern List EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 1) Carcinogens: Category 1 A EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 4) Germ cell mutagens: Category 1 B Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI Sweden Swedish Chemicals Agency (KEMI) Restricted Substances Database This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, -2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs. # Information according to 2012/18/EU (Seveso III): Seveso Category #### 15.2. Chemical safety assessment No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier. #### **ECHA SUMMARY** | Ingredient | CAS number | Index No | ECHA Dossier | |-------------------------------|-------------|--------------|---------------| | LPG (liquefied petroleum gas) | 68476-85-7. | 649-202-00-6 | Not
Available | | Harmonisation (C&L Inventory) Hazard Class and Category Code(s) | | Pictograms Signal
Word Code(s) | Hazard Statement Code(s) | |--|--|-----------------------------------|---| | 1 | Flam. Gas 1; Muta. 1B; Carc. 1B | GHS08; GHS02; GHS04;
Dgr | H220; H340; H350 | | 2 | Flam. Gas 1; Muta. 1B; Carc. 1A; Liq.; Repr. 1A; Acute Tox. 4; STOT RE 2; STOT SE 3; Flam. Liq. 1; STOT SE 1 | GHS08; GHS02; GHS04;
Dgr | H220; H340; H350; H280; H360; H332;
H373; H336; H224; H370 | Harmonisation Code 1 = The most prevalent classification. Harmonisation Code 2 = The most severe classification. #### **National Inventory Status** | National Inventory | Status | |--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (LPG (liquefied petroleum gas)) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | # **SECTION 16 Other information** | Revision Date | 24/02/2023 | |---------------|------------| | Initial Date | 26/10/2020 | #### Full text Risk and Hazard codes | Tuli text Nisk and Nazard Godes | | | |---------------------------------|--|--| | H220 | Extremely flammable gas. | | | H224 | Extremely flammable liquid and vapour. | | | H280 | Contains gas under pressure; may explode if heated. | | | H332 | Harmful if inhaled. | | | H336 | May cause drowsiness or dizziness. | | | H340 | May cause genetic defects. | | | H350 | May cause cancer. | | | H360 | May damage fertility or the unborn child. | | | H370 | Causes damage to organs. | | | H373 | May cause damage to organs through prolonged or repeated exposure. | | Chemwatch: 5435-19 Page 12 of 12 Issue Date: 24/02/2023 Version No: 5.1 Print Date: 24/02/2023 # Polar Fuel Cell Cartridge **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------|--| | 4.1 | 10/02/2023 | Handling and storage - Storage (storage requirement) | | 5.1 | 24/02/2023 | Toxicological information - Acute Health (inhaled), First Aid measures - Advice to Doctor, Physical and chemical properties - Appearance, Toxicological information - Chronic Health, Ecological Information - Environmental, Exposure controls / personal protection - Personal Protection (Respirator), Identification of the substance / mixture and of the company / undertaking - Supplier Information, Identification of the substance / mixture and of the company / undertaking - Synonyms, Name | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards: EN 166 Personal eye-protection EN 340 Protective clothing EN 374 Protective gloves against chemicals and micro-organisms EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.